
主讲教师：汪红松

数据结构
（C语言版）（第2版）

串、数组和广义表

熟悉串的表示和实现，包括顺序存储和链式存储表示

熟悉数组的存储方法

了解特殊矩阵和稀疏矩阵的压缩存储，稀疏矩阵的转置运
算

了解广义表的逻辑结构和存储结构

01
OPTION

02
OPTION

03
OPTION

教学目标

04
OPTION

教 学 内 容

1

2

串的概念及存储结构

数组与广义表

Contents

老师
一、串的定义
二、串的存储结构
三、串的模式匹配BF算法

一、串的定义

串(String)----零个或多个字符组成的有限序列

'' 21 naaas 

串名

串值

串长 n 空串 n=0

a=‘BEI’Ø,
b=‘JING’
c=‘BEIJING’
d=‘BEI JING’

子串

字符位置

主串

子串位置

串相等

空格串

一、串的定义

0}n ,,,2,1,|{  nietCharacterSaaD ii 数据对象:

数据关系: },,2,1,,| ,{ 111 niDaaaaR iiii  

基本操作:

(1) StrAssign (&T,chars) //串赋值
(2) StrCompare (S,T) //串比较
(3) StrLength (S) //求串长
(4) Concat(&T,S1,S2) //串联

ADT String {

一、串的定义

 (5) SubString(&Sub,S,pos,len) //求子串

 (6) StrCopy(&T,S) //串拷贝

 (7) StrEmpty(S) //串判空

 (8) ClearString (&S) //清空串

 (9) Index(S,T,pos) //子串的位置

 (11) Replace(&S,T,V) //串替换

 (12) StrInsert(&S,pos,T) //子串插入

 (12) StrDelete(&S,pos,len) //子串删除

 (13) DestroyString(&S) //串销毁

}ADT String

一、串的定义

二、串的存储结构

链式存储

顺序存储

typedef struct{
 char *ch; //若串非空,则按串长分配存储区,
 //否则ch为NULL
 int length; //串长度
}HString;

#define MAXLEN 255 //用户可在255以内定文最大串长
typedef struct{
 char ch[MAXLEN+1]; //存储串的一维数组
 int length; //串长度
}SString;

定长顺序存储结构

堆式顺序存储结构

二、串的存储结构

A B C D E F G H I # # #

head

A B C I

head

...

2.链式存储表示

(b) 结点大小为1的链表

(a) 结点大小为4的链表

二、串的存储结构

#define CHUNKSIZE 80 //可由用户定义的块大小
typedef struct Chunk{
 char ch[CHUNKSIZE];
 struct Chunk *next;
}Chunk;

typedef struct{
 Chunk *head,*tail; //串的头指针和尾指针
 int curlen; //串的当前长度
}LString;

2.链式存储表示二、串的存储结构

优点：操作方便
缺点：存储密度较低

可将多个字符存放在一个结点中，以克服其缺点

实际分配的存储位
串值所占的存储位

存储密度 =

A B C D E F G H I # # #

head

A B C I

head

...

2.链式存储表示二、串的存储结构

1.串的模式匹配算法

算法目的：

算法种类：

A

B

确定主串中所含子串第一次出现的位置
（定位）。

n BF算法（又称古典的、经典的、朴素
的、穷举的）

n KMP算法（特点：速度快）

三、串的模式匹配BF算法

S : a b a b c a b c a c b a b
T : a b c

S : a b a b c a b c a c b a b
T : a b c

S : a b a b c a b c a c b a b
T : a b c

i=3

j=3

2.BF算法设计思想

i指针回溯
i=2

j=1
i=6

j=4

第一趟匹配：

第二趟匹配：

第三趟匹配：

三、串的模式匹配BF算法

将主串的第pos个字符和模式的第一个字符比较，若相
等，继续逐个比较后续字符；若不等，从主串的下一
字符起，重新与模式的第一个字符比较。

直到主串的一个连续子串字符序列与模式相等 。
返回值为S中与T匹配的子序列第一个字符的序号，
即匹配成功。

Index(S,T,pos)

否则，匹配失败，返回值 0

2.BF算法设计思想三、串的模式匹配BF算法

int Index(Sstring S,Sstring T,int pos){
 i=pos; j=1;
 while (i <= S.length && j <=T[0]){
 if (S.ch[i]=T.ch[j]) {++i; ++j; }
 else{ i=i-j+2; j=1; }
 if (j > S.length) return i－ S.length;
 else return 0;
}

3.BF算法描述三、串的模式匹配BF算法

若n为主串长度，m为子串长度，最坏情况是

4.BF算法时间复杂度

ü主串前面n-m个位置都部分匹配到子串的最后一位，
即这n-m位各比较了m次；

ü最后m位也各比较了1次。

总次数为：(n-m)*m+m＝(n-m+1)*m
若m<<n，则算法复杂度O(n*m)。

例： S=‘0000000001’，T=‘0001’，pos=1

三、串的模式匹配BF算法

小结

1. 串的类型定义
2. 串的顺序存储结构和链式存储结构
3. 串的模式匹配BF算法

